A Karrass–Solitar theorem for profinite groups
نویسندگان
چکیده
منابع مشابه
Profinite Groups
γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...
متن کاملProfinite Monads, Profinite Equations, and Reiterman's Theorem
Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper Reiterman’s theorem is generalised to finite Eilenberg-Moore algebras for a monad T on a variety D of (ordered) algebras: ...
متن کاملFusion systems for profinite groups
We introduce the notion of a pro-fusion system on a pro-p group, which generalizes the notion of a fusion system on a finite p-group. We also prove a version of Alperin’s Fusion Theorem for pro-fusion systems.
متن کاملA generalization to profinite groups
Let G be a profinite group and let α be an automorphism of G. Then α is topologically intense if, for every closed subgroup H of G, there exists x ∈ G such that α(H) = xHx. Topologically intense automorphisms are automatically continuous, because they stabilize each open normal subgroup of the group on which they are defined. We denote by Intc(G) the group of topologically intense automorphisms...
متن کاملProfinite groups, profinite completions and a conjecture of Moore
Let R be any ring (with 1), Γ a group and RΓ the corresponding group ring. Let H be a subgroup of Γ of finite index. Let M be an RΓ−module, whose restriction to RH is projective. Moore’s conjecture [5]: Assume for every nontrivial element x in Γ, at least one of the following two conditions holds: M1) 〈x〉 ∩ H 6= {e} (in particular this holds if Γ is torsion free) M2) ord(x) is finite and invert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Group Theory
سال: 2006
ISSN: 1433-5883,1435-4446
DOI: 10.1515/jgt.2006.009