A Karrass–Solitar theorem for profinite groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profinite Groups

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...

متن کامل

Profinite Monads, Profinite Equations, and Reiterman's Theorem

Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper Reiterman’s theorem is generalised to finite Eilenberg-Moore algebras for a monad T on a variety D of (ordered) algebras: ...

متن کامل

Fusion systems for profinite groups

We introduce the notion of a pro-fusion system on a pro-p group, which generalizes the notion of a fusion system on a finite p-group. We also prove a version of Alperin’s Fusion Theorem for pro-fusion systems.

متن کامل

A generalization to profinite groups

Let G be a profinite group and let α be an automorphism of G. Then α is topologically intense if, for every closed subgroup H of G, there exists x ∈ G such that α(H) = xHx. Topologically intense automorphisms are automatically continuous, because they stabilize each open normal subgroup of the group on which they are defined. We denote by Intc(G) the group of topologically intense automorphisms...

متن کامل

Profinite groups, profinite completions and a conjecture of Moore

Let R be any ring (with 1), Γ a group and RΓ the corresponding group ring. Let H be a subgroup of Γ of finite index. Let M be an RΓ−module, whose restriction to RH is projective. Moore’s conjecture [5]: Assume for every nontrivial element x in Γ, at least one of the following two conditions holds: M1) 〈x〉 ∩ H 6= {e} (in particular this holds if Γ is torsion free) M2) ord(x) is finite and invert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2006

ISSN: 1433-5883,1435-4446

DOI: 10.1515/jgt.2006.009